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Two points in a polygon are called visible if the straight line 
segment between them lies entirely inside the polygon. The art 
gallery problem for a polygon P is to find a minimum set of points 
G in P such that every point of P is visible fiom some point of 
G. This problem has been shown to be NP-hard by Lee and Lin 
1711. However, Chvatal showed that the number of points of G 
will never exceed Ln/3] for a simple polygon of n sides 1211. This 
latter result is referred to as the art gallery theorem. 

Many variations on the art gallery problem have been studied, 
and work in this area has accelerated after the publication of the 
monograph of 0 ’Rourke 1921, which deals exclusively with this 
topic. 

This paper provides an introduction to art gallery theorems, and 
surveys the recent results of the field. The emphasis is on the results 
rather than the techniques. In addition, this paper examines several 
new problems that have the same geometric flavor as art gallery 
problems. 

I. INTRODUCTION 

A. Definitions 
This section contains necessary definitions, some back- 

ground on art galleries, and a discussion of the scope of this 
paper. We begin with the definitions, following O’Rourke 

Apolygon is generally defined as an ordered sequence of 
at least three points V I ,  v2,. . . , U, in the plane, called ver- 
tices, and the n line segments m,2)203, . . . , B, and 
21,211, called edges. A simple polygon is then a polygon with 
the constraint that nonconsecutive edges do not intersect. A 
simple polygon is a Jordan curve, and thus divides the plane 
into three subsets: the polygon itself, the (bounded) interior, 
and the (unbounded) exterior. However, we will henceforth 
use the term “polygon” to refer to “simple polygon plus 
interior.” Polygons are thus closed, bounded sets in the 
plane. 

A polygon P is said to be covered by a collection of 
subsets of P if the union of these subsets is exactly P. The 
collections of subsets is called a cover of P. A cover of P 

[921. 

Fig. 1. A polygon and one of its triangulations. 

is called a decomposition if the intersection of each pair of 
subsets in the cover has zero area. A triangulation of a poly- 
gon is a decomposition of the polygon into triangles without 
adding vertices. This is done by chopping the polygon with 
diagonals (line segments between nonadjacent vertices). A 
polygon and one of its triangulations are shown in Fig. 
1. A triangulation graph of a polygon P is the graph on 
the vertices of P where two vertices are joined if they 
share an edge, or are the endpoints of a diagonal in a fixed 
triangulation. The class of polygon triangulation graphs is 
the same as the class of maximal outerplanar graphs. 

Many algorithms in computational geometry incorporate 
a polygon triangulation step. Recently, Chazelle presented 
an algorithm that will compute a triangulation of a polygon 
in O(n)  time [15]; the algorithmic complexity results pre- 
sented here have been reanalyzed in the light of this result. 
Consequently, the running times quoted in this paper often 
do not agree with that presented in the paper to which the 
algorithm is attributed. In particular, whenever a log log n 
term is not present in a complexity result in this paper, but 
is in the original source, it is because Chazelle’s algorithm 
has been substituted for the previously-best O(n log log n) 
algorithm of Tarjan and van Wyk [117]. 

Let 2 and y be two points in a polygon P.We will say that 
z and y are visible if the line segment does not intersect 
the exterior of P. In Fig. 2, the point a is visible to b and 
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the visibility polygon of z, and is denoted -V(&. p). 
We will distinguish some sets of points in a polygon by 

calling them guard sets. The individual elements of a guard 

0018-9219/92$03.00 0 1992 IEEE 

1384 

7 

PROCEEDINGS OF THE IEEE, VOL. 80, NO. 9, SEPTEMBER 1992 



Fig. 2. Point a can see b and c, but not d .  

Fig. 3. A covering guard set; a hidden set. 

set are called guards. If all of the points in a guard set 
are vertices of P, then G is called a vertex guard set, and 
the elements of G are called vertex guards. Otherwise G 
is called a point guard set, and its elements point guards. 
Other types of guards will be discussed later. 

A guard set G is said to cover a polygon P if the 
collection of sets {V(g,  P )  1 g E G }  covers P.  The points 
in the polyon on the left in Fig. 3 are a covering guard 
set. We will later see that the definition of covering for 
guard sets is a simple generalization of the usual definition 
of covering given above. The art gallery problem for a 
polygon P is to find a minimum-cardinality covering guard 
set G for P. It is so called because one envisions the 
polygon P as the floor plan of an art gallery, and the points 
of G as locations to place guards, so that every part of the 
art gallery is seen by at least one guard. We use g(P) to 
denote the cardinality of a minimum covering guard set for 
the polygon P. 

A concept similar to that of covering guard sets is hidden 
sets. A hidden set is a set of points H in a polygon such 
that no pair of points of H is visible. The points in the 
polygon on the right in Fig. 3 are a hidden set. Hidden 
sets are known in the mathematics literature as visually 
independent sets and are related to “property P,” [65]. 

An orthogonal polygon is a polygon with edges that al- 
ternate between horizontal (zero slope) and vertical (infinite 
slope). Orthogonal polygons have also been called iso- 
thetic and rectilinear. Orthogonal polygons are an important 
subclass of polygons which arise in many computing appli- 
cations, owing to the ease with which they are represented 
and manipulated, and to the design of many machines (such 
as image scanners and plotting devices) that are used in 
these applications. Restricting the polygons considered in 
the art gallery problem to orthogonal polygons creates an in- 
teresting subclass of problems, and has led to many results, 

Fig. 4. Comb polygons 

B. Art Gallery History 
The original art gallery problem, posed in conversation 

by Klee to Chvital, is to find the smallest number of point 
guards necessary to cover any polygon of n vertices; this 
number will be denoted g(n) (not to be confused with 
g(P)  as defined above). In terms of galleries, g(n) is the 
minimum number of guards necessary to supervise any 
gallery with n walls. 

Chvatal quickly proved that g(n) = Ln/3], a result which 
has come to be known as the art gallery theorem [21]. First, 
he showed that g(n) 2 Ln/3J, by exhibiting the class of 
polygons now known as comb polygons; examples of comb 
polygons are shown in Fig. 4 for n = 9 and n = 15. Comb 
polygons exist for any n that is a multiple of 3. Each comb 
polygon requires n/3 guards, as no one guard can see into 
any two “teeth” (upward triangular regions) of the comb, 
and there are n/3 such teeth. 

Next, Chvhtal showed that g(n) 5 Ln/3], by a relatively 
complex inductive argument on triangulation graphs of 
polygons. Fisk later gave the following more concise proof 
of this inequality [47]: First, triangulate the polygon. Next, 
three-color the vertices of the triangulation graph: assign 
each vertex one of three different colors, so that no two 
vertices which are adjacent in the graph have the same 
color. Each triangle of the graph, which corresponds to 
a triangle of the triangulation, will have one vertex of 
each color. Furthermore, every point of a triangle is visible 
to each vertex of that triangle. Therefore, choosing any 
of the three color classes will result in a set of vertices 
from which every point of every triangle, and thus every 
point of the polygon, is visible (i.e., each color class is a 
covering vertex guard set). By the pigeonhole principle, the 
smallest of these color classes will contain at most Ln/3] 
vertices. 

Later, Lee and Lin showed that the art gallery problem 
for polygons (given a polygon P ,  find the minimum number 
of guards necessary to cover P )  is NP-hard [70], by 
reduction from Boolean three-satisfiability. Their result is 
for vertex guards, and this was extended to point guards 
by Aggarwal [2]. The reader unfamiliar with complexity 
theory is referred to the book of Garey and Johnson [ S O ] .  

Although Lee and Lin’s result implies that it is imprac- 
tical to find a minimum set of guards (i.e., to find g ( P )  
guards) for a given polygon, Avis and Toussaint showed 
that it is possible to find a set of g(n) guards for a polygon 
in polynomial time [7]. Algorithms for finding such guard 
sets are called guard placement algorithms. Most guard 
placement algorithms work by imitating upper-bound art 
gallery proofs, and Avis and Toussaint’s algorithm is no 
exception, being an algorithmic imitation of Fisk’s proof. 
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Fig. 5. Orthogonal comb polygons. 

C. Orthogonal Art Galleries 
Kahn, Klawe, and Kleitman investigated the art gallery 

problem restricted to orthogonal polygons [63]. They ex- 
hibit the orthogonal comb polygons of Fig. 5,  establishing 
that orth(n) 2 Ln/4] (orth(n) denotes the maximum 
number of guards necessary for any orthogonal polygon of 
n vertices). They prove a matching upper bound, orth(n) 5 
Ln/4J, in the same manner as Fisk proved the original art 
gallery theorem, but they decompose the polygon into con- 
vex quadrilaterals rather than triangles, and then four-color 
the quadrilateralization graph, so that each quadrilateral has 
one vertex of each of the four colors. The bulk of their paper 
is devoted to proving that every orthogonal polygon has a 
decomposition into convex quadrilaterals. 

Edelsbrunner, O’Rourke, and Welzl gave an O(n)  point 
guard placement algorithm for orthogonal polygons, based 
on L-shaped partitioning [37]. Lubiw and Sack and Tou- 
ssaint have presented other linear placement algorithms 
based on quadrilateralization [76], [ 1001, [ 1031. 

D. Importance of Art Galleries 
Art gallery problems are studied by computing scientists 

because they are fundamental visibility problems, and vis- 
ibility is a central issue in many computing applications. 
Application areas for visibility include robotics [69], [ 1231, 
motion planning [75], [go], vision [113], [124], graphics 
[79], [ 171, CAD/CAM [12], [38], computer-aided architec- 
ture [34], [99], and pattern recognition [5], [118]. Other 
reasons that art gallery problems are studied are that they 
are a continuous form of classical facility-location prob- 
lems, have a simple formulation, and require an interesting 
interplay of graph theory, geometry, and computing science 
in their solution. 

The monograph of O’Rourke [91] is devoted to art gallery 
problems and contains well-written detailed expositions of 
the results mentioned above, and the techniques used in 
their proofs. Since the publication of this book, activity in 
art gallery problems has rapidly increased, yielding many 
new theorems and algorithms. This paper is an attempt 
to collect these recent results into one place. However, 
we do not intend this paper to be a tutorial on the proof 
techniques used, and hence provide only a few details about 
the methods. 

E.  Organization of Paper 
The remainder of this paper is organized into six sections. 

Section I1 contains results about different types of guards. 
Section I11 contains covering results, and Section IV is 
about covering the outsides of polygons. Section V con- 
tains results on visibility graphs, and Section VI contains 

Fig. 6. Polygons requiring Ln/4J edge guards. 

problems which are not strictly art gallery problems, but 
have the same geometric feel. Conclusions are drawn in 
Section VII. 

11. GENERALIZED GUARDS 
In this section, we consider some variations of the art 

gallery problem that arise when specified subsets of the 
polygon, rather than just points, are allowed as elements of 
guard sets. A point will be called visible to such a subset 
if it is visible to some point in that subset. This notion 
of visibility from a subset is known as weak visibility, in 
contrast to strong visibiliry, where a point is called visible 
to a subset if it is visible to every point of the subset [6]. 

More formally, if R is a subset inside a polygon P ,  we 
let V ( R , P )  = { p  E P I 3r E R such that p and r 
are visible}. We are still interested in finding minimum- 
cardinality covering guard sets, but now the individual 
guards will be various types of subsets. We are concerned 
only with the number of guards, and not with the sizes 
of the individual guards. Typical types of subsets used as 
guards are convex sets or polygon edges. 

This branch of variations on the art gallery problem was 
started by Toussaint in 1981, when he asked how the art 
gallery theorem would change if guards were allowed to 
patrol individual edges of a polygon rather than continually 
standing at the same point. He wanted to know the guarding 
function gE(n),  the minimum number of edge guards 
necessary to cover any polygon of n vertices. 

Toussaint’s conjecture is that if a small number of poly- 
gons are excluded, gE(n)  = Ln/4]. To lend weight to this 
conjecture, he exhibited the polygon class illustrated in Fig. 
6, which establishes that g E ( n )  2 Ln/4J. Two types of 
polygons are known that require more than Ln/4J edge 
guards. These polygons, proposed by Paige and Shermer, 
require L(n + 1)/4] guards, and are shown in Fig. 7. How- 
ever, these polygons are thought to be isolated exceptions, 
hence the qualification in Toussaint’s conjecture. 

O’Rourke was the first to make progress on Toussaint’s 
conjecture. Although he was unable to establish an upper 
bound on g E ( n ) ,  he was able to prove an upper bound on 
g M  (n), the minimum number of mobile guards necessary 
for any polygon of n vertices [90]. Mobile guards are a 
slightly more general version of edge guards; each mobile 
guard can patrol either an edge or a diagonal of the 
polygon. Thus, every edge guard is a mobile guard, and 
g M ( 4  I g E W  
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