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Let Q = {qj, qz,..., qn / be a set of n points on the plane. The largest empty circle 
(LEC) problem consists in finding the largest circle C with center in the convex 
hull of Q such that no point  q(C Q lies in the interior of C. Shamos recently 
outlined an O(n log n) algorithm for solving this problemJ 9) In this paper it is 
shown that this algorithm does not always work correctly. A different approach 
is proposed here and shown to also result in an O(n log n) algorithm. The new 
approach has the advantage that it can also solve more general problems. In 
particular, it is shown that if the center of C is constrained to lie in an arbitrary 
convex n gon, an O(n log n) algorithm can still be obtained. Finally, an 
O(n log n + k log n) algorithm is given for solving this problem when the center 
of C is constrained to lie in an arbitrary simple n-gon P, where k denotes the 
number of intersections occurring between edges of P and edges of the Voronoi 
diagram of Q and k ~ O(n2). 

KEY WORDS:  Largest empty circle; facility location; polygons; Voronoi 
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1. INTRODUCTION 

Let Q =  {ql,q2 ..... qn} be a set of n points on the plane and let CH(Q) 
denote the convex hull of  Q. The largest empty circle (LEC) problem 
consists in finding the largest circle the center of which lies in CH(Q) such 
that no point of  Q lies in the interior of the circle. It is clear that the location 
of the center must be constrained. Otherwise we simply set the center at 
infinity and obtain an infinitely larg e circle. It is assumed that the points 
in Q are specified in terms of their Cartesian coordinates and they lie in 
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Fig. 1. A set of  points, their convex hull, and the 
largest empty circle. 

Fig. 2. Illustrating the case where the solution circle is centered on 
a vertex of the Voronoi diagram. 
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general position in the sense that no three are collinear and no four are cocir- 
cular. Figure 1 illustrates a set of  points and the solution circle. Until 
recently, the best known algorithm for solving this problem required O(n 3) 
time. ~4) More recently, Shamos ~9) outlined an O(n log n) algorithm based 
upon computing the Voronoi diagram of  Q, V(Q). It is assumed here that the 
reader is familiar with the Voronoi diagram properties discussed in Ref. 9. 
For example, the Voronoi diagram has at most m = 2n - 4 Voronoi vertices 
(V-vertices) V =  {Vl,VZ,...,Vm} and each v i is the circumcenter of three 
points of  Q determined by a Delaunay triangle in the dual of  the Voronoi 
diagram of  Q. Furthermore, these circles are empty. If all v i in V lie in 
CH(Q), then one of these vertices is the center of the solution circle. 
However, not all the V-vertices of  V(Q) need lie in CH(Q), in which case the 
solution circle may be a V-vertex or it may lie at the intersection point of an 
edge of V(Q) and an edge of CH(Q), as will be shown in Section 2.2. 
Figure 2 illustrates the Voronoi diagram of a set of points where the solution 

qi 

//: 

/ 

\ 
\ 

N 
\ 

N 
X \  

\ \  
\ 

\ 

r 3 

�9 I 
t 
I 

I 

I 
O 
1 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

~ [ ~  

Fig. 3. The  case  where  the solut ion circle  is not  centered on a 
Vorono i  vertex. 
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circle is centered on a V-vertex. Figure 3 illustrates a situation where the 
solution center is not a V-vertex. Shamos' algorithm consists of two parts: 
the firSt part computes the Voronoi diagram of Q and the magnitudes of all 
the circles centered at V-vertices that lie in CH(Q), and the second part 
looks for intersection points of V-edges with CH(Q) edges and computes the 
magnitudes of the empty circles centered at these intersection points (see 
Fig. 3). Now each CH-edge, such as qiqj in Fig. 3, determines an unbounded 
V-edge r I collinear with the perpendicular bisector of the CH-edge. In Ref. 9, 
Shamos claims that each CH-edge, such as qiqj, either intersects r 1 or the 
two V-edges adjacent to r 1 (r 2 and r3) in Fig. 3, i,e., that a CH-edge 
intersects at most two V-edges. Drawing on this, the second part of  the 
algorithm checks each CH-edge with the corresponding one or three (as the 
case may be) V-edges for intersection points and computes the corresponding 
empty circles. Since the Voronoi diagram Can be computed in O(nlog n) 
time and for each CH-edge the circles are computed in O(1) time, the 
algorithm has a total running time of O(n log n). 

Unfortunately, the above claim is false and such an algorithm may miss 
some circles; indeed, it may miss the largest empty circle itself and thus fail. 
One counterexample to the above algorithm is illustrated in Fig. 4. Note that 
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Fig. 4. A counterexample to the algorithm of 
Shamos. 
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all V-vertices lie outside CH(Q), r 2 and r 3 do not intersect the corre- 
sponding CH-edge, and indeed a CH-edge may intersect more than two 
V-edges; in fact, it may intersect O(n) V-edges. In Fig. 4, the LEC (solid 
curve) is not detected and instead the algorithm exits with a suboptimal 
solution (dashed curve). These examples reopen the question of whether an 
O(n log n) upper bound exists for this problem. Figure 4 suggests that we 
may be able to efficiently search the Voronoi diagram starting at every 
unbounded V-edge until all intersections of V-edges with the corresponding 
CH-edge are found. In fact, earlier work by Shamos ~1~ suggests a depth- 
first and breadth-first search, respectively, for solving this problem. However, 
it is not clear what the complexity of such a step would be. Although in 
Refs. 10 and 11, Shamos claims this step can be done in O(n) time, no 
proofs are given and the simplistic arguments are not convincing. For 
example, in Ref. 10 it is claimed that each edge of V(Q) can intersect at most 
one edge of CH(Q), but, as Fig. 4 illustrates, this is not necessarily true. Also 
in Ref. 11, it is claimed that in a breadth-first search no V-edge will be 
examined more than once. However, Fig. 5 illustrates a situation where a 

Fig. 5. An example where breadth-first search examines 
some Voronoi edges twice. 
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breadth-first search examines some V-edges twice. Rather than try to prove 
the correctness of the approaches taken in Refs. 10 and 11, in this paper we 
propose a new approach to this problem that not only yields an algorithm 
with O(n log n) running time, but an algorithm that is simpler, admits an 
easy proof of correctness, and extends to more interesting and applicable 
generalizations of the LEC problem. 

One interpretation of the LEC problem is to let Q denote a set of cities 
in a country. If it is desired to place an installation such as a nuclear power 
plant in a location that maximizes the distance from the power plant to the 
nearest city, then the location is the center of the largest empty circle. 
However, the convex hull of the cities is not a very realistic constraint on the 
location of a nuclear power plant. The CH(Q) may intersect other countries 
and the resulting solution may call for placing the plant in a country that 
may not grant permission. Alternately, the country in which the cities lie 
may have a large peninsula protruding from CH(Q). The optimal solution 
may indeed call for placing the plant on the peninsula, and thus constraining 
the location to CH(Q) would yield a suboptimal solution. Finally, one may 
simple wish to constrain the location to some region within the country, such 
as a desert. Furthermore, this region may not contain a V-vertex and may 
not intersect V-edges, in which case the CH constraint fails completely. In 
this paper, it is shown that if the center is constrained to lie in an arbitrary 
convex polygon with n sides, an O(n log n) algorithm can still be obtained. 
Finally, an O(n log n + k log n) algorithm is given for solving this problem 
when the center of the circle is constrained to lie in an arbitrary simple n- 
sided polygon P =  (Pl,Pz ..... p,), where k denotes the number of inter- 
sections occurring between edges of P and edges of V(Q) and k ~< O(n2). It is 
assumed that P is given as an array of vertices, in clockwise order, along 
with their Cartesian coordinates, and that it is in standard form, i.e., the 
vertices are distinct and no three consecutive vertices are collinear. A pair of 
vertices PiPi+~ defines an edge of the polygon, where i =  1,2,...,n and 
P,+~ = Pl.  Clearly the number of vertices of P need not equal to number of 
points in Q, but such an assumption will simplify the complexity of notation. 
If the reader wishes to observe the role played by each, it is straightforward 
to repeat the complexity analysis when P and Q have different eardinalities. 

2, NEW ALGORITHMS 

2.1. The Convex Hull Location Constraint 

We first consider the LEC problem treated by Shamos ~9) and Dasarathy 
and White, (4) where the center is constrained to lie in CH(Q). 


