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This paper considers the topic of efficiently 
triangulating a simple polygon with em- 
phasis on practical and easy-to-implement 
algorithms. It also describes a new adap- 
tive algorithm for triangulating a simple 
n-sided polygon. The algorithm runs in 
time O(n(1 + to) ) with to < n. The quantity 
to measures the shape-complexity of the 
triangulation delivered by the algorithm. 
More precisely to is the number of ob- 
tained triangles contained in the triangula- 
tion that share zero edges with the input 
polygon and is, furthermore, related to the 
shape-complexity of the input polygon. Al- 
though the worst-case complexity of the 
algorithm is O(n2), for several classes of 
polygons it runs in linear time. The practi- 
cal advantages of the algorithm are that 
it is simple and does not require sorting 
or the use of balanced tree structures. On 
the theoretical side, it is of interest because 
it is the first polygon triangulation algo- 
rithm where the computational complexity 
is a function of the output complexity. As 
a side benefit, we introduce a new measure 
of the complexity of a polygon triangula- 
tion that should find application in other 
contexts as well. 
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1 Introduction 

We are concerned with triangulating a special type 
of polygon in the Euclidean plane E 2 referred to 
as a simple (also Jordan) polygon. For any integer 
n > 3, we define a polygon or n-gon in the Euclidean 
plane E 2 as the figure P =  Ix1, Xa .. . .  , x,] formed 
by n points xl ,  x2 . . . .  , x, in E z and n line segments 
[xi,xi+t], i = 1 , 2  . . . .  , n - l ,  and [x,,xl]. The 
points xi are called the vertices of the polygon and 
the line segments are termed its edges. A polygon 
P is called a simple polygon provided that no point 
of the plane belongs to more than two edges of 
P and the only points of the plane that belong 
to precisely two edges are the vertices of P. A sim- 
ple polygon has a well defined interior and exterior. 
We will follow the convention of including the inte- 
rior of a polygon when referring to P. The bound- 
ary of P in this case will be referred to as bd(P). 
Our problem is that of constructing a triangulation 
of P, i.e., decomposing P into a set of non-overlap- 
ping triangles (where their interiors do not inter- 
sect) without adding new vertices. Mathematicians 
have been interested in constructive proofs (algo- 
rithms) of the existence of triangulations for simple 
polygons as early as 1911 (Lennes). The "algo- 
ri thm" of Lennes works by recursively inserting 
diagonals between pairs of vertices of P and runs 
in O(n 2) time. Since then this type of "algorithm" 
has very often reappeared in a score of papers and 
text books during the past 70 years surprisingly 
containing fundamental errors. See the paper by 
Ho (1975) for a series of counter-examples to pub- 
lished triangulation "proofs." A rather different in- 
ductive proof was offered more recently by Meis- 
ters (1975). He proposed a method based on search- 
ing for "ears" and "cutting" them off. We call a 
vertex xi of polygon P a principal vertex provided 
that no vertex of P lies in the interior of the triangle 
[xi- l ,x i ,  x~+ll or in the interior of the diagonal 
[xz- 1, xi+ 1]. A principal vertex xi of a simple poly- 
gon P is called an ear if the diagonal [x~_ 1, xz+ 1] 
that bridges x~ lies entirely in P. We say that two 
ears x~ and xj are non-overlapping if int [xz_ 1, x~, 
xi+ 1] c~ int [x~_ 1, x j, xj + 1] = ~ .  The following 
Two-Ears theorem was proved by Meisters (1975). 

Theorem Two-Ears: Except for the triangles, every 
simple polygon P has at least two non-overlapping 
ears. 

A straightforward implementation of this idea 
leads to a complexity of O(n3). However, it was 
recently discovered that a prune-and-search tech- 
nique will actually find an ear in linear time, thus 
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yielding an O (n 2) implementation of Meisters' algo- 
rithm (E1Gindy et al. in press). A good subpolygon 
of a simple polygon P, denoted by GSP, is a subpo- 
lygon whose boundary differs from that of P in 
at most one edge. A proper ear of a good subpoly- 
gon GSP is an ear of GSP which is also an ear 
of P. One of the key observations in E1Gindy et al. 
is that a good subpolygon has at least one proper 
ear. The strategy of their algorithm is as follows. 
Given a polygon P on n vertices, split it in O(n) 
time into two subpolygons such that one of these 
subpolygons is a good subpolygon with at most 
In/2] + 1 vertices. This splitting step is the crucial 
step in the algorithm. Subsequently, apply the algo- 
rithm recursively to this good subpolygon, which 
is guaranteed to have a proper ear. The worst-case 
running time of the algorithm is given by the recur- 
rence T(n)=cn+T([n/2J+l),  where c is a con- 
stant, which has solution T(n) ~ 0 (n). 
The first algorithm to break the O (n 2) upper bound 
was that of Garey et al. (1978). Their algorithm 
runs in time O (n log n), which is the time required 
by the first step to decompose the polygon into 
monotone sub-polygons. Then they apply an algo- 
rithm for triangulating monotone polygons in lin- 
ear time. Note that a simpler linear-time algorithm 
for the latter problem is now available (Toussaint 
1984). An alternate decomposition method with the 
same complexity appears in Fournier and Mon- 
tuno (1984). An entirely different divide-and-con- 
quer approach by Chazelle (1982) also achieves an 
O(n log n) upper bound. Finally, this upper bound 
was reduced even further by Tarjan and Van Wyk 
(1988). With very complicated and sophisticated 
data structures, they are able to triangulate a sim- 
ple polygon in O(n log log n) time. However, re- 
cently the same complexity was demonstrated us- 
ing simple data structures (Kirkpatrick 1990). 
Until May 1990 (Chazelle), one of the most out- 
standing open problems in computational geome- 
try has been to determine if a simple polygon can 
be triangulated in O(n) time. As an alternative, 
some researchers searched for large classes of poly- 
gons that can be triangulated in linear time. Such 
classes include monotone polygons (Garey et al. 
1978; Toussaint 1984), star-shaped polygons 
(Schoone and van Leeuwen 1980; Woo and Shin 
1985), edge-visible polygons (Toussaint and Avis 
1982), spiral polygons (Feng and Pavlidis 1975; 
Toussaint 1986), L-convex polygons (E1Gindy et al. 
1983), intersection-free polygons (Lee and Chwa 
1987), weakly-externally-visible polygons (E1Gindy 

1985), palm-shaped polygons (E1Gindy and Tous- 
saint 1984, 1985), and anthropomorphic polygons 
(Toussaint 1988). In yet another approach to the 
problem, researchers designed adaptive algorithms 
that run fast in many situations. Hertel and Mehl- 
horn (1975) have described a sweep-line-based al- 
gorithm that performs better the fewer reflex ver- 
tices it has. The running time of their method is 
O (n + r log r), where r denotes the number of reflex 
vertices of P. Hertel and Mehlhorn's algorithm 
takes the first step towards obtaining an adaptive 
algorithm sensitive to the shape of the polygon. 
Unfortunately, r is not a truly relevant measure 
of the shape complexity. To see this it is sufficient 
to realize that given any polygon of no matter what 
shape it is a trivial matter to insert n vertices (one 
betwen every original pair) and pull them an infini- 
tesimal amount towards the interior of the poly- 
gon, Such a transformation will make r proportion- 
al to n without changing the basic shape of the 
polygon. 
Chazelle and Incerpi (1984) took a further step to 
achieve a time complexity that more faithfully re- 
flects the shape complexity of the polygon. They 
describe a triangulation algorithm that runs in time 
O(n logs) with s<n. The quantity s measures the 
sinuosity of the polygon, i.e., the number of times 
the polygon's boundary alternates between com- 
plete spirals of opposite orientation. Unlike r, s 
has the advantage that in many practical situations 
it is very small or a constant even for very winding 
polygons. Consider the motion of a straight line 
L[xi, xi+l] passing through edge EXi,Xi+I] a s  i 
goes from 1 to n -  1. Every time L[xi, xi+l] reaches 
the vertical position in a clockwise (respectively 
counter-clockwise) manner, we increment (respec- 
tively decrement) a winding-counter by one. L[xz, 
xi+ 1] is said to be spiraling (respectively anti-spiral- 
ing) if the winding counter is never decremented 
(respectively incremented) twice in succession. In 
this way, the polygon may be decomposed easily 
in O(n) time into spiraling and anti-spiraling poly- 
gonal chains. An example of a polygon with a sin- 
uosity of five is shown in Fig. 1 a. Note that a new 
polygonal chain is restarted only when the previous 
chain ceases to be spiraling or anti-spiraling. The 
sinuosity s of P is defined as the number of polygon- 
al chains thus obtained. 
The Chazelle-Incerpi algorithm is much more in- 
teresting theoretically than the algorithm of Hertel 
and Mehlhorn, because of the implications it has 
on the complexity of triangulating different known 
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Fig. 1. (a) This fairly complicated-looking polygon 
has a sinuosity of only five. Scanning starts at a in 
a clockwise fashion. (b) A polygon edge-visible 
from uv with a sinuosity of O(n) 

classes of polygons. Because r, the number of reflex 
vertices, is independent of whether a polygon is 
monotonic, star-shaped, edge-visible or whatever, 
Hertel and Mehlhorn's algorithm can run in O(n 
log n) time for these classes of polygons, for which 
linear time algorithms are known. On the other 
hand, star-shaped polygons have a sinuosity of one 
and thus the Chazelle-Incerpi algorithm runs in 
linear time for these polygons. Furthermore the 
algorithm makes no use of the kernel of P. In 
Schoone and van Leeuwen (1988) and Woo and 
Shin (1985), a point in the kernel is required and 
this implies a non-trivial (although linear time) ef- 
fort. For a completely different and extremely sim- 
ple algorithm for triangulating a star-shaped poly- 
gon without making use of the kernel of P, see 
E1Gindy and Toussaint (1988, 1989). However, the 
sinuosity is not completely satisfactory as a mea- 
sure of the shape complexity. It has the disconcert- 
ing property that it can vary by an order of magni- 
tude depending on the orientation of the input 
polygon. Consider the edge-visible polygen illus- 
trated in Fig. 1 b. Recall that a polygon P is edge 
visible if there exists an edge [u, v] of P such that 
for each point x in P there exists a point y in [u, v] 

such that the line segment Ix, y] lies in P. The 
sinuosity for the polygon in Fig. 1 b is 0 (n) and 
thus the Chazelle-Incerpi algorithm runs in O(n 
log n) time on this polygon, whereas a linear-time 
algorithm exists (Toussaint and Avis 1982). Fur- 
thermore, by rotating the polygon through an an- 
gle of 90 ~ the sinuosity reduces to 0(1). This repre- 
sents an order of magnitude change in the sinuosity 
of P for no change in the shape of P (naturally 
we assume shape is invariant under translation and 
rotation). 
Finally, we mention a new adaptive algorithm dis- 
covered recently (Kong et al. in press) that is based 
on the Graham scan. The Graham scan is a funda- 
mental backtracking technique in computational 
geometry which was originally designed to com- 
pute the convex hull of a set of points in the plane 
(Graham 1972) and has since found application in 
several different contexts. In Kong et al., it is shown 
how to use the Graham scan to triangulate a simple 
polygon in O(kn) time where k - 1  is the number 
of concave vertices in P. Although the worst-case 
running time of the algorithm is O (n 2) and hence 
not as good asymptotically as the algorithm of 
Hertel and Mehlhorn, it is much easier to imple- 
ment and is therefore of practical interest. In fact, 
together with the algorithm presented in this paper, 
it is probably the best route to take in practice. 
A simple test to determine for a given polygon 
what the value of k is will determine which algo- 
rithm to use. If k is small, use the Kong et al. algo- 
rithm, if it is large use the algorithm proposed in 
this paper. For completeness and availability we 
include a full description of this algorithm. For 
a proof of correctness and a complexity analysis, 
the reader is referred to Kong et al. 
The algorithm adapts the Graham scan in the fol- 
lowing manner. The vertices of the polygon are 
scanned in order starting with x2. At each step, 
the current vertex is tested to see if it is an ear. 
If it is not an ear, then the current vertex is ad- 
vanced. If it is an ear, then the ear is cut off; that 
is, a diagonal is added to the triangulation and 
a vertex is deleted from the polygon. The current 
vertex is not advanced in this case, except in the 
special case that the ear is the vertex following xo. 
This prevents Xo from being cut as an ear. 
To illustrate the execution of the algorithm, consid- 
er the polygon in Fig. 2. Initially, the algorithm 
tests x~ and determines that it is not an ear (note 
that this is equivalent to testing whether x2 is the 
top of an ear). The scan is advanced through x2, 
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x3, x4 and xs, at which time xs is determined to 
be an ear. Next xs is cut and then x4 is tested 
and found not to be an ear. The next vertex tested 
is x6. It is found to be an ear and cut. Again x4 
is tested and this time it is an ear so it is cut. 
The remaining vertices will be cut in the order XT, 
X3, X8, X2, X 9, X 1. 

Algorithm. Triangulate (P): The algorithm takes 
as input a simple polygon P = [ x l ,  x2 . . . .  ,x,],  
stored as a doubly linked circular list. SUCC(x0 
and PRED (xz) indicate the successor and predeces- 
sor of xi respectively. The algorithm produces a 
set D of diagonals comprising a triangulation of 
P. R is a set containing all the concave vertices 
of P. IsAnEar(P, R, x~) is a function which returns 
true if x~ is an ear in polygon P and false otherwise. 

1. Xi+--X2; 
2, while (xi is not equal to Xo) do 
3. if (IsAnEar(P, R, PRED(xi)) and P is not 

a triangle then {PRED(xi) is an ear.} 
4. D *- D vo (PRED (PRED (x,)), x,) 

{Store a diagonal.} 
5. P , , - P - P R E D ( x O  {Cut theear.} 
6. if x~e R and xi is a convex vertex then 

{xi has become convex.} 
7. R + - R - x i  
8. if PRED (xi) e R and PRED (xi) is a convex 

vertex then 
{PRED (xi) has become convex.} 

9. R ~ R - PRED (xi) 
10. if (PRED (xi) = x0) then 

{SUCC(xo) was cut.} 
11. xi ~ SUCC(xi) {Advance the scan.} 
12. else xi~- SUCC(xi) {PRED(xi) is not an 

ear or P is a triangle. Advance the scan.} 
13. end while 
END Triangulate 
F U N C T I O N  IsAnEar(P, R, xi): 
1. if R = ~ then return true 

{P is a convex polygon} 
2. else if xj is a convex vertex then 
3. if triangle (PRED (x j), x j, SUCC (x j)) 

contains no vertex of R then 
4. return true 
5. else return false 
6. else return false 
End IsAnEar 

In May 1990, Chazelle (1990) finally showed that 
a simple polygon of n vertices could be triangulated 

in O (n) time. This discovery is a significant theoreti- 
cal breakthrough. As a result there is not much 
merit from the theoretical time-complexity point of 
view in proposing algorithms that are adaptive and 
only sometimes run in O(n) time unless they con- 
tribute also to a new theoretical perspective. How- 
ever, Chazelle's linear time algorithm appears to 
be difficult to program and thus it is not clear pre- 
sently if it will have practical consequences. In this 
light, the adaptive algorithm just described and the 
one proposed in this paper constitute contributions 
to the practical efficiency of triangulating polygons. 
These algorithms are easy to describe and program 
and they run fast in practice. 
In this paper, we describe a new algorithm for 
triangulating a simple n-sided polygon. The algo- 
rithm runs in time O(n(l+to)  ) with to<n. The 
quantity to measures the complexity of the triangu- 
lation delivered by the algorithm. More precisely, 
to is the number of triangles obtained in the output 
triangulation that share zero edges with the input 
polygon and is related to the shape-complexity of 
the polygon. Although the worst-case complexity 
of the algorithm is O(n2), for several classes of poly- 
gons it runs in linear time. The practical advan- 
tages of the algorithm are that it is extremely sim- 
ple and does not require sorting or the use of bal- 

x1 x ~ 1 0  x9 x2 x 5 ~ x  6 

x 0 ~ Ix.. , ,Xll x g ~  x 7 

Fig. 2. Algorithm triangulate (P) 

Fig. 3. A triangulation (solid lines) of a simple 
polygon P, its dual tree (dotted lines), and the 
integer value tl associated with each triangle 
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