
Efficient
triangulation
of simple polygons

Godfried Toussaint

School of Computer Science, McGill University,
3480 University Street, Montreal, Quebec,
Canada H3A 2A7
e-mail: godfried @opus.cs.mcgill.ca.

This paper considers the topic of efficiently
triangulating a simple polygon with em-
phasis on practical and easy-to-implement
algorithms. It also describes a new adap-
tive algorithm for triangulating a simple
n-sided polygon. The algorithm runs in
time O(n(1 + to)) with to < n. The quantity
to measures the shape-complexity of the
triangulation delivered by the algorithm.
More precisely to is the number of ob-
tained triangles contained in the triangula-
tion that share zero edges with the input
polygon and is, furthermore, related to the
shape-complexity of the input polygon. Al-
though the worst-case complexity of the
algorithm is O(n2), for several classes of
polygons it runs in linear time. The practi-
cal advantages of the algorithm are that
it is simple and does not require sorting
or the use of balanced tree structures. On
the theoretical side, it is of interest because
it is the first polygon triangulation algo-
rithm where the computational complexity
is a function of the output complexity. As
a side benefit, we introduce a new measure
of the complexity of a polygon triangula-
tion that should find application in other
contexts as well.

Key words: Polygon - Algorithm - Trian-
gulation - Computational geometry - Ge-
ometric Complexity

280

1 Introduction

We are concerned with triangulating a special type
of polygon in the Euclidean plane E 2 referred to
as a simple (also Jordan) polygon. For any integer
n > 3, we define a polygon or n-gon in the Euclidean
plane E 2 as the figure P = Ix1, Xa , x,] formed
by n points xl , x2 , x, in E z and n line segments
[xi,xi+t], i = 1 , 2 , n - l , and [x,,xl]. The
points xi are called the vertices of the polygon and
the line segments are termed its edges. A polygon
P is called a simple polygon provided that no point
of the plane belongs to more than two edges of
P and the only points of the plane that belong
to precisely two edges are the vertices of P. A sim-
ple polygon has a well defined interior and exterior.
We will follow the convention of including the inte-
rior of a polygon when referring to P. The bound-
ary of P in this case will be referred to as bd(P).
Our problem is that of constructing a triangulation
of P, i.e., decomposing P into a set of non-overlap-
ping triangles (where their interiors do not inter-
sect) without adding new vertices. Mathematicians
have been interested in constructive proofs (algo-
rithms) of the existence of triangulations for simple
polygons as early as 1911 (Lennes). The "algo-
ri thm" of Lennes works by recursively inserting
diagonals between pairs of vertices of P and runs
in O(n 2) time. Since then this type of "algorithm"
has very often reappeared in a score of papers and
text books during the past 70 years surprisingly
containing fundamental errors. See the paper by
Ho (1975) for a series of counter-examples to pub-
lished triangulation "proofs." A rather different in-
ductive proof was offered more recently by Meis-
ters (1975). He proposed a method based on search-
ing for "ears" and "cutting" them off. We call a
vertex xi of polygon P a principal vertex provided
that no vertex of P lies in the interior of the triangle
[xi- l ,x i , x~+ll or in the interior of the diagonal
[xz- 1, xi+ 1]. A principal vertex xi of a simple poly-
gon P is called an ear if the diagonal [x~_ 1, xz+ 1]
that bridges x~ lies entirely in P. We say that two
ears x~ and xj are non-overlapping if int [xz_ 1, x~,
xi+ 1] c~ int [x~_ 1, x j, xj + 1] = ~ . The following
Two-Ears theorem was proved by Meisters (1975).

Theorem Two-Ears: Except for the triangles, every
simple polygon P has at least two non-overlapping
ears.

A straightforward implementation of this idea
leads to a complexity of O(n3). However, it was
recently discovered that a prune-and-search tech-
nique will actually find an ear in linear time, thus

The Visual Computer (1991) 7:28~295
�9 Springer-Verlag 1991

yielding an O (n 2) implementation of Meisters' algo-
rithm (E1Gindy et al. in press). A good subpolygon
of a simple polygon P, denoted by GSP, is a subpo-
lygon whose boundary differs from that of P in
at most one edge. A proper ear of a good subpoly-
gon GSP is an ear of GSP which is also an ear
of P. One of the key observations in E1Gindy et al.
is that a good subpolygon has at least one proper
ear. The strategy of their algorithm is as follows.
Given a polygon P on n vertices, split it in O(n)
time into two subpolygons such that one of these
subpolygons is a good subpolygon with at most
In/2] + 1 vertices. This splitting step is the crucial
step in the algorithm. Subsequently, apply the algo-
rithm recursively to this good subpolygon, which
is guaranteed to have a proper ear. The worst-case
running time of the algorithm is given by the recur-
rence T(n)=cn+T([n/2J+l), where c is a con-
stant, which has solution T(n) ~ 0 (n).
The first algorithm to break the O (n 2) upper bound
was that of Garey et al. (1978). Their algorithm
runs in time O (n log n), which is the time required
by the first step to decompose the polygon into
monotone sub-polygons. Then they apply an algo-
rithm for triangulating monotone polygons in lin-
ear time. Note that a simpler linear-time algorithm
for the latter problem is now available (Toussaint
1984). An alternate decomposition method with the
same complexity appears in Fournier and Mon-
tuno (1984). An entirely different divide-and-con-
quer approach by Chazelle (1982) also achieves an
O(n log n) upper bound. Finally, this upper bound
was reduced even further by Tarjan and Van Wyk
(1988). With very complicated and sophisticated
data structures, they are able to triangulate a sim-
ple polygon in O(n log log n) time. However, re-
cently the same complexity was demonstrated us-
ing simple data structures (Kirkpatrick 1990).
Until May 1990 (Chazelle), one of the most out-
standing open problems in computational geome-
try has been to determine if a simple polygon can
be triangulated in O(n) time. As an alternative,
some researchers searched for large classes of poly-
gons that can be triangulated in linear time. Such
classes include monotone polygons (Garey et al.
1978; Toussaint 1984), star-shaped polygons
(Schoone and van Leeuwen 1980; Woo and Shin
1985), edge-visible polygons (Toussaint and Avis
1982), spiral polygons (Feng and Pavlidis 1975;
Toussaint 1986), L-convex polygons (E1Gindy et al.
1983), intersection-free polygons (Lee and Chwa
1987), weakly-externally-visible polygons (E1Gindy

1985), palm-shaped polygons (E1Gindy and Tous-
saint 1984, 1985), and anthropomorphic polygons
(Toussaint 1988). In yet another approach to the
problem, researchers designed adaptive algorithms
that run fast in many situations. Hertel and Mehl-
horn (1975) have described a sweep-line-based al-
gorithm that performs better the fewer reflex ver-
tices it has. The running time of their method is
O (n + r log r), where r denotes the number of reflex
vertices of P. Hertel and Mehlhorn's algorithm
takes the first step towards obtaining an adaptive
algorithm sensitive to the shape of the polygon.
Unfortunately, r is not a truly relevant measure
of the shape complexity. To see this it is sufficient
to realize that given any polygon of no matter what
shape it is a trivial matter to insert n vertices (one
betwen every original pair) and pull them an infini-
tesimal amount towards the interior of the poly-
gon, Such a transformation will make r proportion-
al to n without changing the basic shape of the
polygon.
Chazelle and Incerpi (1984) took a further step to
achieve a time complexity that more faithfully re-
flects the shape complexity of the polygon. They
describe a triangulation algorithm that runs in time
O(n logs) with s<n. The quantity s measures the
sinuosity of the polygon, i.e., the number of times
the polygon's boundary alternates between com-
plete spirals of opposite orientation. Unlike r, s
has the advantage that in many practical situations
it is very small or a constant even for very winding
polygons. Consider the motion of a straight line
L[xi, xi+l] passing through edge EXi,Xi+I] a s i
goes from 1 to n - 1. Every time L[xi, xi+l] reaches
the vertical position in a clockwise (respectively
counter-clockwise) manner, we increment (respec-
tively decrement) a winding-counter by one. L[xz,
xi+ 1] is said to be spiraling (respectively anti-spiral-
ing) if the winding counter is never decremented
(respectively incremented) twice in succession. In
this way, the polygon may be decomposed easily
in O(n) time into spiraling and anti-spiraling poly-
gonal chains. An example of a polygon with a sin-
uosity of five is shown in Fig. 1 a. Note that a new
polygonal chain is restarted only when the previous
chain ceases to be spiraling or anti-spiraling. The
sinuosity s of P is defined as the number of polygon-
al chains thus obtained.
The Chazelle-Incerpi algorithm is much more in-
teresting theoretically than the algorithm of Hertel
and Mehlhorn, because of the implications it has
on the complexity of triangulating different known

281

u
b
Fig. 1. (a) This fairly complicated-looking polygon
has a sinuosity of only five. Scanning starts at a in
a clockwise fashion. (b) A polygon edge-visible
from uv with a sinuosity of O(n)

classes of polygons. Because r, the number of reflex
vertices, is independent of whether a polygon is
monotonic, star-shaped, edge-visible or whatever,
Hertel and Mehlhorn's algorithm can run in O(n
log n) time for these classes of polygons, for which
linear time algorithms are known. On the other
hand, star-shaped polygons have a sinuosity of one
and thus the Chazelle-Incerpi algorithm runs in
linear time for these polygons. Furthermore the
algorithm makes no use of the kernel of P. In
Schoone and van Leeuwen (1988) and Woo and
Shin (1985), a point in the kernel is required and
this implies a non-trivial (although linear time) ef-
fort. For a completely different and extremely sim-
ple algorithm for triangulating a star-shaped poly-
gon without making use of the kernel of P, see
E1Gindy and Toussaint (1988, 1989). However, the
sinuosity is not completely satisfactory as a mea-
sure of the shape complexity. It has the disconcert-
ing property that it can vary by an order of magni-
tude depending on the orientation of the input
polygon. Consider the edge-visible polygen illus-
trated in Fig. 1 b. Recall that a polygon P is edge
visible if there exists an edge [u, v] of P such that
for each point x in P there exists a point y in [u, v]

such that the line segment Ix, y] lies in P. The
sinuosity for the polygon in Fig. 1 b is 0 (n) and
thus the Chazelle-Incerpi algorithm runs in O(n
log n) time on this polygon, whereas a linear-time
algorithm exists (Toussaint and Avis 1982). Fur-
thermore, by rotating the polygon through an an-
gle of 90 ~ the sinuosity reduces to 0(1). This repre-
sents an order of magnitude change in the sinuosity
of P for no change in the shape of P (naturally
we assume shape is invariant under translation and
rotation).
Finally, we mention a new adaptive algorithm dis-
covered recently (Kong et al. in press) that is based
on the Graham scan. The Graham scan is a funda-
mental backtracking technique in computational
geometry which was originally designed to com-
pute the convex hull of a set of points in the plane
(Graham 1972) and has since found application in
several different contexts. In Kong et al., it is shown
how to use the Graham scan to triangulate a simple
polygon in O(kn) time where k - 1 is the number
of concave vertices in P. Although the worst-case
running time of the algorithm is O (n 2) and hence
not as good asymptotically as the algorithm of
Hertel and Mehlhorn, it is much easier to imple-
ment and is therefore of practical interest. In fact,
together with the algorithm presented in this paper,
it is probably the best route to take in practice.
A simple test to determine for a given polygon
what the value of k is will determine which algo-
rithm to use. If k is small, use the Kong et al. algo-
rithm, if it is large use the algorithm proposed in
this paper. For completeness and availability we
include a full description of this algorithm. For
a proof of correctness and a complexity analysis,
the reader is referred to Kong et al.
The algorithm adapts the Graham scan in the fol-
lowing manner. The vertices of the polygon are
scanned in order starting with x2. At each step,
the current vertex is tested to see if it is an ear.
If it is not an ear, then the current vertex is ad-
vanced. If it is an ear, then the ear is cut off; that
is, a diagonal is added to the triangulation and
a vertex is deleted from the polygon. The current
vertex is not advanced in this case, except in the
special case that the ear is the vertex following xo.
This prevents Xo from being cut as an ear.
To illustrate the execution of the algorithm, consid-
er the polygon in Fig. 2. Initially, the algorithm
tests x~ and determines that it is not an ear (note
that this is equivalent to testing whether x2 is the
top of an ear). The scan is advanced through x2,

282

x3, x4 and xs, at which time xs is determined to
be an ear. Next xs is cut and then x4 is tested
and found not to be an ear. The next vertex tested
is x6. It is found to be an ear and cut. Again x4
is tested and this time it is an ear so it is cut.
The remaining vertices will be cut in the order XT,
X3, X8, X2, X 9, X 1.

Algorithm. Triangulate (P): The algorithm takes
as input a simple polygon P = [x l , x2 ,x,],
stored as a doubly linked circular list. SUCC(x0
and PRED (xz) indicate the successor and predeces-
sor of xi respectively. The algorithm produces a
set D of diagonals comprising a triangulation of
P. R is a set containing all the concave vertices
of P. IsAnEar(P, R, x~) is a function which returns
true if x~ is an ear in polygon P and false otherwise.

1. Xi+--X2;
2, while (xi is not equal to Xo) do
3. if (IsAnEar(P, R, PRED(xi)) and P is not

a triangle then {PRED(xi) is an ear.}
4. D *- D vo (PRED (PRED (x,)), x,)

{Store a diagonal.}
5. P , , - P - P R E D (x O {Cut theear.}
6. if x~e R and xi is a convex vertex then

{xi has become convex.}
7. R + - R - x i
8. if PRED (xi) e R and PRED (xi) is a convex

vertex then
{PRED (xi) has become convex.}

9. R ~ R - PRED (xi)
10. if (PRED (xi) = x0) then

{SUCC(xo) was cut.}
11. xi ~ SUCC(xi) {Advance the scan.}
12. else xi~- SUCC(xi) {PRED(xi) is not an

ear or P is a triangle. Advance the scan.}
13. end while
END Triangulate
F U N C T I O N IsAnEar(P, R, xi):
1. if R = ~ then return true

{P is a convex polygon}
2. else if xj is a convex vertex then
3. if triangle (PRED (x j), x j, SUCC (x j))

contains no vertex of R then
4. return true
5. else return false
6. else return false
End IsAnEar

In May 1990, Chazelle (1990) finally showed that
a simple polygon of n vertices could be triangulated

in O (n) time. This discovery is a significant theoreti-
cal breakthrough. As a result there is not much
merit from the theoretical time-complexity point of
view in proposing algorithms that are adaptive and
only sometimes run in O(n) time unless they con-
tribute also to a new theoretical perspective. How-
ever, Chazelle's linear time algorithm appears to
be difficult to program and thus it is not clear pre-
sently if it will have practical consequences. In this
light, the adaptive algorithm just described and the
one proposed in this paper constitute contributions
to the practical efficiency of triangulating polygons.
These algorithms are easy to describe and program
and they run fast in practice.
In this paper, we describe a new algorithm for
triangulating a simple n-sided polygon. The algo-
rithm runs in time O(n(l+to)) with to<n. The
quantity to measures the complexity of the triangu-
lation delivered by the algorithm. More precisely,
to is the number of triangles obtained in the output
triangulation that share zero edges with the input
polygon and is related to the shape-complexity of
the polygon. Although the worst-case complexity
of the algorithm is O(n2), for several classes of poly-
gons it runs in linear time. The practical advan-
tages of the algorithm are that it is extremely sim-
ple and does not require sorting or the use of bal-

x1 x ~ 1 0 x9 x2 x 5 ~ x 6

x 0 ~ Ix.. , ,Xll x g ~ x 7

Fig. 2. Algorithm triangulate (P)

Fig. 3. A triangulation (solid lines) of a simple
polygon P, its dual tree (dotted lines), and the
integer value tl associated with each triangle

283

